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Objective
Add 2 new keywords to the Go compiler: “four” loops and unless statements

Inspired by George Hotz’s stream adding “four” loops to Clang

Disclaimer: I don’t think these would actually be good additions to Go!

https://www.youtube.com/watch?v=ee1bXLDN60U


“four” Loop
four i := 8; i <= 20; i++ {

fmt.Println(i)

}

for i := 8; i <= 20; i += 4 {

fmt.Println(i)

}

Output:

8

12

16

20



Unless Statement
unless i%8 == 0 {

fmt.Println(i, “is not divisible by 8”)

}

if !(i%8 == 0) {

fmt.Println(i, “is not divisible by 8”)

}



Example
for i := 8; i <= 20; i += 4 {

if !(i%8 == 0) {

fmt.Println(i, “is not divisible by 8”)

continue

}

fmt.Println(i, “is divisible by 8”)

}



Example
Output:

8 is divisible by 8

12 is not divisible by 8

16 is divisible by 8

20 is not divisible by 8



Example
four i := 8; i <= 20; i++ {

unless i%8 == 0 {

fmt.Println(i, “is not divisible by 8”)

continue

}

fmt.Println(i, “is divisible by 8”)

}



Compiler Overview
1. Lexical Analysis/Parsing

2. Type Checking 

3. IR Construction (“noding”)

4. Middle End

5. Walk

6. SSA Generation

7. Machine Code Generation

“front-end”

“middle-end”

“back-end”



Lexical Analysis and Parsing
The source file is scanned character by character and tokenized.

A recursive descent parser processes these tokens and converts them to a 
concrete syntax tree.

● recursive descent parser: it works top-down, from package-level type 
and function definitions down to individual expressions

● concrete syntax tree: it is an exact representation of the source file

The syntax tree also has positional info for error reporting and debugging 
purposes.

https://en.wikipedia.org/wiki/Recursive_descent_parser
https://en.wikipedia.org/wiki/Parse_tree


Lexical Analysis and Parsing

$ go generate tokens.go



Lexical Analysis and Parsing
four <init>; <cond>; <post> {

<body>

}

unless <init>; <cond> {

<then>

}
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Lexical Analysis and Parsing
four <init>; <cond>; <post> {

<body>

}

unless <init>; <cond> {

<then>

}



Type Checking
Type checking is done in several phases over the syntax tree, e.g.

● Name resolution: mapping identifiers to language objects 

● Constant folding: computing compile-time constants

● Type inference: computing the type of every expression and   checking 

for compliance with language specification 

https://pkg.go.dev/go/types
https://pkg.go.dev/go/types
https://pkg.go.dev/go/types


Type Checking



Type Checking
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Type Checking



IR Construction (“noding”)
IR: Intermediate Representation, a representation better suited for   

optimization and translation.

Convert from a type checked concrete syntax tree to an abstract syntax tree. 

Go calls this process “noding”.

https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Abstract_syntax_tree


IR Construction (“noding”)
$ go generate node.go
$ go run mknode.go



IR Construction (“noding”)
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Middle End
Several optimization passes are performed on the AST, e.g.

● Dead code elimination

● Devirtualization

● Function inlining

● Escape analysis

https://en.wikipedia.org/wiki/Dead-code_elimination
https://go.dev/src/cmd/compile/internal/devirtualize/devirtualize.go
https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Escape_analysis


Escape Analysis
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Escape Analysis



Walk
The walk is the final pass over the AST in the Go compiler.

It has 2 steps:

● “Order” step: convert complex statements into simpler ones, introducing 

temporary variables and respecting order of evaluation.

● “Desugar” step: convert high level constructs into more primitive ones,       

e.g. range clauses in for loops rewritten with an explicit loop variable.

https://en.wikipedia.org/wiki/Syntactic_sugar


Walk
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SSA Generation
The abstract syntax tree is converted to an IR in Static Single Assignment      form.

Static Single Assignment: Program is split up into blocks where each            
variable is assigned only once.

A series of machine independent optimization passes are run on the                 
SSA IR, e.g.

● Removing unused branches
● Removing unneeded nil checks

https://en.wikipedia.org/wiki/Static_single-assignment_form
https://en.wikipedia.org/wiki/Cross-platform_software


SSA Control Flow Graph
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Machine Code Generation
The SSA IR is then “lowered”, rewriting generic values to machine specific      
ones.

A series of machine-dependent optimization passes are run, e.g.
● moving values closer to their uses
● register allocations

The final output is passed to the assembler to generate the actual machine      
code which will be linked and then can be executed. 

https://en.wikipedia.org/wiki/Machine-dependent_software


Compiler Tooling

$ GOSSAFUNC=main go build -gcflags=-l main.go





Summary
● Compilation can be broken down into 3 stages, each with a different 

representation

● Implement changes in the middle end by desugaring complex statements 
into simpler ones

● Implement changes in the backend by generating SSA code

● How to analyze the compilation process and output with GOSSAFUNC



Thanks for listening!

Scan to see all of the code


