
Exploring the Go Compiler:
Adding a “four” loop

GopherCon 2024
Riley Thompson

Objective
Add 2 new keywords to the Go compiler: “four” loops and unless statements

Inspired by George Hotz’s stream adding “four” loops to Clang

Disclaimer: I don’t think these would actually be good additions to Go!

https://www.youtube.com/watch?v=ee1bXLDN60U

“four” Loop
four i := 8; i <= 20; i++ {

fmt.Println(i)

}

for i := 8; i <= 20; i += 4 {

fmt.Println(i)

}

Output:

8

12

16

20

Unless Statement
unless i%8 == 0 {

fmt.Println(i, “is not divisible by 8”)

}

if !(i%8 == 0) {

fmt.Println(i, “is not divisible by 8”)

}

Example
for i := 8; i <= 20; i += 4 {

if !(i%8 == 0) {

fmt.Println(i, “is not divisible by 8”)

continue

}

fmt.Println(i, “is divisible by 8”)

}

Example
Output:

8 is divisible by 8

12 is not divisible by 8

16 is divisible by 8

20 is not divisible by 8

Example
four i := 8; i <= 20; i++ {

unless i%8 == 0 {

fmt.Println(i, “is not divisible by 8”)

continue

}

fmt.Println(i, “is divisible by 8”)

}

Compiler Overview
1. Lexical Analysis/Parsing

2. Type Checking

3. IR Construction (“noding”)

4. Middle End

5. Walk

6. SSA Generation

7. Machine Code Generation

“front-end”

“middle-end”

“back-end”

Lexical Analysis and Parsing
The source file is scanned character by character and tokenized.

A recursive descent parser processes these tokens and converts them to a
concrete syntax tree.

● recursive descent parser: it works top-down, from package-level type
and function definitions down to individual expressions

● concrete syntax tree: it is an exact representation of the source file

The syntax tree also has positional info for error reporting and debugging
purposes.

https://en.wikipedia.org/wiki/Recursive_descent_parser
https://en.wikipedia.org/wiki/Parse_tree

Lexical Analysis and Parsing

$ go generate tokens.go

Lexical Analysis and Parsing
four <init>; <cond>; <post> {

<body>

}

unless <init>; <cond> {

<then>

}

Lexical Analysis and Parsing
four <init>; <cond>; <post> {

<body>

}

unless <init>; <cond> {

<then>

}

Lexical Analysis and Parsing
four <init>; <cond>; <post> {

<body>

}

unless <init>; <cond> {

<then>

}

Lexical Analysis and Parsing
four <init>; <cond>; <post> {

<body>

}

unless <init>; <cond> {

<then>

}

Lexical Analysis and Parsing
four <init>; <cond>; <post> {

<body>

}

unless <init>; <cond> {

<then>

}

Type Checking
Type checking is done in several phases over the syntax tree, e.g.

● Name resolution: mapping identifiers to language objects

● Constant folding: computing compile-time constants

● Type inference: computing the type of every expression and checking

for compliance with language specification

https://pkg.go.dev/go/types
https://pkg.go.dev/go/types
https://pkg.go.dev/go/types

Type Checking

Type Checking

Type Checking

Type Checking

Type Checking

IR Construction (“noding”)
IR: Intermediate Representation, a representation better suited for

optimization and translation.

Convert from a type checked concrete syntax tree to an abstract syntax tree.

Go calls this process “noding”.

https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Abstract_syntax_tree

IR Construction (“noding”)
$ go generate node.go
$ go run mknode.go

IR Construction (“noding”)
$ go generate node.go
$ go run mknode.go

Middle End
Several optimization passes are performed on the AST, e.g.

● Dead code elimination

● Devirtualization

● Function inlining

● Escape analysis

https://en.wikipedia.org/wiki/Dead-code_elimination
https://go.dev/src/cmd/compile/internal/devirtualize/devirtualize.go
https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Escape_analysis

Escape Analysis

Escape Analysis

Escape Analysis

Escape Analysis

Escape Analysis

Walk
The walk is the final pass over the AST in the Go compiler.

It has 2 steps:

● “Order” step: convert complex statements into simpler ones, introducing

temporary variables and respecting order of evaluation.

● “Desugar” step: convert high level constructs into more primitive ones,

e.g. range clauses in for loops rewritten with an explicit loop variable.

https://en.wikipedia.org/wiki/Syntactic_sugar

Walk

Walk

Walk

Walk

SSA Generation
The abstract syntax tree is converted to an IR in Static Single Assignment form.

Static Single Assignment: Program is split up into blocks where each
variable is assigned only once.

A series of machine independent optimization passes are run on the
SSA IR, e.g.

● Removing unused branches
● Removing unneeded nil checks

https://en.wikipedia.org/wiki/Static_single-assignment_form
https://en.wikipedia.org/wiki/Cross-platform_software

SSA Control Flow Graph

SSA Generation

SSA Generation

SSA Generation

cond

SSA Generation

cond

SSA Generation

cond

body

SSA Generation

cond

body

end

SSA Generation

cond

body

end

SSA Generation

cond

body

incr

end

SSA Generation

cond

body

incr

end

SSA Generation

cond

body

incr

end

SSA Generation

cond

body

incr

end

SSA Generation

cond

body

incr

end

SSA Generation

cond

body

incr

end

incr
incr

incr

SSA Generation

cond

body

incr

end

incr
incr

incr

SSA Generation

cond

body

incr

end

incr
incr

incr

Machine Code Generation
The SSA IR is then “lowered”, rewriting generic values to machine specific
ones.

A series of machine-dependent optimization passes are run, e.g.
● moving values closer to their uses
● register allocations

The final output is passed to the assembler to generate the actual machine
code which will be linked and then can be executed.

https://en.wikipedia.org/wiki/Machine-dependent_software

Compiler Tooling

$ GOSSAFUNC=main go build -gcflags=-l main.go

Summary
● Compilation can be broken down into 3 stages, each with a different

representation

● Implement changes in the middle end by desugaring complex statements
into simpler ones

● Implement changes in the backend by generating SSA code

● How to analyze the compilation process and output with GOSSAFUNC

Thanks for listening!

Scan to see all of the code

